Contents

Preface	
Chapter 1: Composition and history of buckling-restrained braces	1
1.1 Composition of buckling-restrained braces	2
1.2 History of development	3
1.3 Types of BRBs	6
Chapter 2: Restrainer design and clearances	11
2.1 Restrainer design	12
2.2 Debonding gap	17
2.3 Core material and overstrength	18
2.4 Hysteretic models for analysis	20
2.5 Quality requirement for stable hysteresis	23
Chapter 3: Local bulging failure	25
3.1 Failure caused by local buckling	26
3.2 Estimation of outward force demand	28
3.3 Local buckling wavelength estimation	28
3.4 Estimation of steel tube capacity	30
3.5 Test results and evaluations	33
3.6 Required mortar strength	43
3.7 Local buckling criterion for circular restrainer	44
3.8 Summary	45
Chapter 4: Connection design and global stability	47
4.1 Typical connection details and design forces	48
4.2 Global instability including connections	49
4.3 Stability condition with one-way configuration	57
4.4 Stability condition with chevron configuration	70
4.5 Evaluation for key parameters	78
4.6 Connection design against in-plane deformation	81

Chapter 5: Cumulative deformation capacity	87
5.1 Low-cycle fatigue induced fracture	88
5.2 Effect of the debonding clearance	101
5.3 Effect of the plastic core length	108
Chapter 6: Performance test specification for BRB	111
6.1 Test configurations	112
6.2 Test resume and loading protocol	114
6.3 Qualification requirements	118
6.4 Post-earthquake inspection	118
Chapter 7: BRBF Applications	123
7.1 Damage tolerant concept	124
7.2 Response evaluation of BRBF	133
7.3 Seismic retrofit with BRBs	147
7.4 Response evaluation of BRBs retrofit for RC frames	157
7.5 Direct connections to RC frames	172
7.6 Applications for truss and spatial structures	190
7.7 Spine frame concepts	205
Appendix	223
A.1 Typical BRB details	224
A.2 Rotational spring at connections	228
A.3 BRB buckling capacity	232
A.4 Pδ moment distribution at connection zone	237
Index	238
HIUGA	